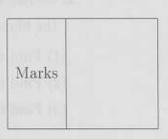
2013 年度日本政府(文部科学省) 奨学金留学生選考試験

QUALIFYING EXAMINATION FOR APPLICANTS FOR JAPANESE GOVERNMENT (MONBUKAGAKUSHO) SCHOLARSHIPS 2013

学科試験 問題
EXAMINATION QUESTIONS


(学部留学生) UNDERGRADUATE STUDENTS

数 学(B)
MATHEMATICS(B)

注意 ☆試験時間は60分。 PLEASE NOTE: THE TEST PERIOD IS **60 MINUTES**.

MATHEMATICS(B) (2013)

Nationality		No.	
Name	(Please print full nan	ne, underlining family name)	

1. Fill in the blanks with the correct answers.

The minimum of the function $f(x) = (2 + \sin x)(5 - \sin x)$ is
--

(2) If
$$(2k+1)x - (k-2)y + 3k - 1 = 0$$
 for every k , then $x =$ and $y =$ (ii)

(4) Let
$$a$$
 and b be rational numbers. If $\frac{(\sqrt{3}+\sqrt{2})^3}{\sqrt{3}-\sqrt{2}}=a+b\sqrt{6}$, then $a= (i)$ and $b= (ii)$.

(5) If
$$3^x = 2^y = 5$$
, then $\frac{1}{x} + \frac{1}{y} = \log_5$

2. Consider the function $F(x)$	$= \int_{-\infty}^{x} f(t)dt = x^3 - 2x^2 + x - a$	$(a \neq 0)$. Fill in
the blanks with the answer	s to the following questions.	

- (1) Find a.
- (2) Find the range of x where F(x) > 0.
- (3) Find the area of the region surrounded by the x-axis and the graph of f(x).

(1)	- 7-4	(2)	(3)	
-				

3. Fill in the blanks with the answers to the following questions.

(1) Find the range of m such that the equation $|x^2-3x+2|=mx$ has 4 distinct real solutions α , β , γ , δ .

(2) Express the value of $s(m) = \frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2} + \frac{1}{\delta^2}$ in terms of m. (3) When m varies as in (1), find the range of s(m).

(1)	(2)	

(3)	
(0)	