2010年度日本政府(文部科学省)奨学金留学生選考試験

QUALIFYING EXAMINATION FOR APPLICANTS FOR JAPANESE

GOVERNMENT (MONBUKAGAKUSHO) SCHOLARSHIPS 2010

学科試験 問題

EXAMINATION QUESTIONS

(学部留学生)

UNDERGRADUATE STUDENTS

数 学(B)

MATHEMATICS(B)

注意 ☆試験時間は60分。

PLEASE NOTE: THE TEST PERIOD IS 60 MINUTES

Q 1 The quadratic function which takes the value 41 at x = -2 and the value 20 at x = 5 and is minimized at x = 2 is

$$y =$$
 $A x^2 - B x + C$.

The minimum value of this function is **D**.

${f Q}$ 2 Consider the integral expression in x

$$P = x^3 + x^2 + ax + 1,$$

where a is a rational number.

At $a = \begin{bmatrix} \mathbf{A} \end{bmatrix}$ the value of P is a rational number for any x which satisfies the equation $x^2 + 2x - 2 = 0$, and in this case the value of P is $\begin{bmatrix} \mathbf{B} \end{bmatrix}$.

Q 3	For each of	Α	~ [) iı	the	following	statements,	choose th	he most	appropriat	e
	expression from	among	$0 \sim 9$	below							

Consider two conditions $x^2 - 3x - 10 < 0$ and |x - 2| < a on a real number x, where a is a positive real number.

- (i) A necessary and sufficient condition for $x^2 3x 10 < 0$ is that $\begin{bmatrix} A \\ \end{bmatrix} < x < \begin{bmatrix} B \\ \end{bmatrix}$.
- (ii) The range of values of a such that |x-2| < a is a necessary condition for $x^2 3x 10 < 0$
- (iii) The range of values of a such that |x-2| < a is a sufficient condition for $x^2 3x 10 < 0$ is D |.

- ① 2 ① 5 ② -2 ③ -5 ② $a \ge 2$ ⑤ $a \ge 3$ ⑥ $a \ge 4$

- 7 $0 < a \le 2$ 8 $0 < a \le 3$ 9 $0 < a \le 5$

Q 4 Let d be the common difference of an arithmetic progression $\{a_n\}$ $(n = 1, 2, 3, \dots)$ which satisfies the two conditions

$$a_5a_7 - a_4a_9 = 60, \qquad a_{11} = 25.$$

Then

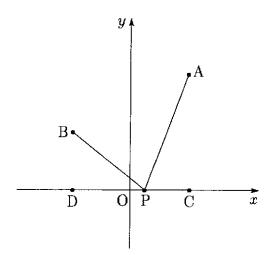
- (1) Either $d = \begin{bmatrix} \mathbf{A} \end{bmatrix}$ or $d = \begin{bmatrix} \mathbf{B} \end{bmatrix}$, where $\begin{bmatrix} \mathbf{A} \end{bmatrix} > \begin{bmatrix} \mathbf{B} \end{bmatrix}$.
- (2) If d = A, then $a_1 = C$, $a_n = D$ n E, and the sum of the first n terms is 195 when n = F.

Q 5 Consider the four points

$$A(1,2), B(-1,1), C(1,0), D(-1,0)$$

on the xy-plane. Let P be a point on the segment CD, excluding the endpoints.

We are to find the point P at which ∠APB is maximized.



Set $\alpha = \angle APC$, $\beta = \angle BPD$ and $\theta = \angle APB$, and let t be the x-coordinate of point P. Then

$$\tan \alpha = \frac{A}{B-t}, \quad \tan \beta = \frac{C}{D+t}$$

and hence

$$\tan \theta = \frac{t + \boxed{\mathsf{E}}}{t^2 + \boxed{\mathsf{F}}}.$$

When we differentiate the right-hand side of this equation with respect to t, we have

$$\left(\begin{array}{c|c} t + \boxed{\mathsf{E}} \\ \hline t^2 + \boxed{\mathsf{F}} \end{array}\right)' = -\frac{t^2 + \boxed{\mathsf{G}} t - 1}{\left(t^2 + \boxed{\mathsf{H}}\right)^2} \,.$$

Therefore the coordinates of point P are

$$\left(\boxed{}, 0 \right).$$

Q 6 Let α be a real number. Let us translate the graph of the cubic function

$$y = f(x) = x^3 + ax^2 + bx + c$$

so that the point $(\alpha, f(\alpha))$ on the graph of ① is translated into the origin (0,0), and express the function of the translated graph in terms of $f'(\alpha)$ and $f''(\alpha)$.

First, we have

$$f'(\alpha) = \boxed{\mathbf{A}} \alpha^2 + \boxed{\mathbf{B}} a\alpha + b$$
 ②

$$f''(\alpha) = \boxed{\mathbf{C}} \alpha + \boxed{\mathbf{D}} a.$$
 3

Next, we consider the translation which translates the point $(\alpha, f(\alpha))$ on the graph of ① into the origin, that is, we replace x with $x + \alpha$ and y with $y + f(\alpha)$ in ①, and obtain the expression

$$y = x^3 + \frac{f''(\alpha)}{\boxed{\mathbf{E}}} x^2 + f'(\alpha)x$$

by using ② and ③.

As an example, consider the function

$$f(x) = x^3 - 12x^2 + 48x - 68.$$

As

$$f'(\boxed{\mathbf{F}}) = 0$$
 and $f''(\boxed{\mathbf{G}}) = 0$,

we see that when we translate the graph of 4 so that the point $(\begin{tabular}{c} \mathbf{H} \end{tabular}, \begin{tabular}{c} \mathbf{I} \end{tabular})$ on the graph is moved to the origin, we get the graph of $y=x^3$.

Consider the curve $y = 2 \log x$, where log is the natural logarithm. Let ℓ be the tangent to that curve which passes through the origin, let P be the point of contact of ℓ and that curve, and let m be the straight line perpendicular to the tangent ℓ at P. We are to find the equations of the straight lines ℓ and m and the area S of the region bounded by the curve $y = 2 \log x$, the straight line m, and the x-axis.

Let t be the x-coordinate of the point P. Then t satisfies $\log t = A$. Hence the equation of ℓ is

$$y = \frac{B}{e} x$$
.

The equation of m is

$$y = -\frac{e}{\boxed{\textbf{C}}} x + \frac{e^2}{\boxed{\textbf{D}}} + \boxed{\textbf{E}}.$$

Thus the area S of the region is

$$S = \boxed{\mathbf{F}} + \boxed{\mathbf{G}}$$
.