2014年度日本政府(文部科学省) 奨学金留学生選考試験

QUALIFYING EXAMINATION FOR APPLICANTS FOR JAPANESE GOVERNMENT (MONBUKAGAKUSHO) SCHOLARSHIPS 2014

学科試験 問題 EXAMINATION QUESTIONS

(学部留学生) UNDERGRADUATE STUDENTS

数 学(A)
MATHEMATICS(A)

注意 ☆試験時間は60分。 PLEASE NOTE: THE TEST PERIOD IS **60 MINUTES**.

Nationality	No.		
Name	(Please print full name, underlining family name)	Marks	

D 11	To	***************************************
Problem	Question Number	Your Response
1	[1-1]	
	[1-2]	
	[1-3]	
	[1-4]	
	[1-5]	-
	[1-6]	
	[1-7]	
=	[1-8]	141
2	[2-1]	-
	[2-2]	
3	[3-1]	-
	[3-2]	
	[3-3]	
	[3-4]	
	[3-5]	
	[3-6]	r e
	[3-7]	
	[3-8]	

MATHEMATICS(A)

(2014)

Nationality	No.		
Name	(Please print full name, underlining family name)	Marks	,

- 1. Answer the following questions and fill in your responses in the corresponding boxes on the answer sheet.
 - (1) Let a and b be an integer part and an decimal fraction of $\sqrt{7}$, respectively. Then the integer part of $\frac{a}{b}$ is [1-1].
 - (2) Consider a cone with a diameter of 12 and a height of 8. The volume of an inscribed sphere in the cone is [1-2].
 - (3) 5^{29} is an integer with 10^{-3} places by assuming that $\log_{10} 2 = 0.3010$.
 - (4) There is a circle with a radius of 2 where the center is at the origin and a line 3x + 4y 12 = 0 in the plane. The minimum distance between a point on the circle and a point on the line is 1-4.
 - (5) If the series $\{a_k\}$ satisfies that $a_1 = 1, a_2 = 2$, and $a_k 4a_{k-1} + 3a_{k-2} = 0 \ (k \ge 3)$, then $a_k = \frac{1 + \lfloor [1-5] \rfloor^k}{\lfloor [1-6] \rfloor}$ $(k \ge 1)$.
 - (6) Let f(x) = ax + b be a linear function. If the equation

$$\int_{-m/2}^{m} f(x) dx \ = \ \frac{m(m+1)}{2}$$

holds for any positive m, then $f(x) = \frac{ \left[\left[1\text{-}7 \right] \right] x \; + \; \left[\left[1\text{-}8 \right] \right] }{3}$.

- 2. Consider a semicircle with a diameter AB where the length is 4, and a point C on the circular arc. Answer the following questions and fill in your responses in the corresponding boxes on the answer sheet.
 - (1) The maximum of the area of the triangle ABC is [2-1]
 - (2) If the area of the triangle ABC is a half of the maximum and point C is nearer to point A than point B, then the angle ∠CAB is [2-2].

3. Consider a function

$$y \ = \ \left(x^3 + \frac{1}{x^3} \right) - 6 \left(x^2 + \frac{1}{x^2} \right) + 3 \left(x + \frac{1}{x} \right)$$

defined in x > 0.

(1) Letting $t = x + \frac{1}{x}$ gives

$$y \ = \ \boxed{ \left[3\text{-}1 \right] } t^3 + \left[\boxed{ \left[3\text{-}2 \right] } t^2 + \left[\boxed{ \left[3\text{-}3 \right] } t + \left[\boxed{ \left[3\text{-}4 \right] } \right].$$

Here it holds that

$$t \ = \ x + \frac{1}{x} \ \geq \ \boxed{ \left[\text{3-5} \right] } \, .$$

(2) When t = [3-6], that is, x = [3-7], y has the minimum value [3-8].