2013年度日本政府(文部科学省) 奨学金留学生選考試験

QUALIFYING EXAMINATION FOR APPLICANTS FOR JAPANESE GOVERNMENT (MONBUKAGAKUSHO) SCHOLARSHIPS 2013

学科試験 問題
EXAMINATION QUESTIONS

(学部留学生) UNDERGRADUATE STUDENTS

数 学(A)
MATHEMATICS(A)

注意 ☆試験時間は60分。 PLEASE NOTE: THE TEST PERIOD IS **60 MINUTES**.

MATHEMATICS(A) (2013)

Nationality		No.	
Name	(Please print full nam	e, underlining family name)	(dit

1. Fill in the blanks with the correct answers.

- (1) The radius of the circle $x^2 + y^2 4x + 6y 12 = 0$ is
- (2) If three straight lines x + 2y 1 = 0, x y + 2 = 0 and ax y + 3 = 0 meet at one point, then $a = \boxed{ }$
- (3) The solution of the inequality $\sqrt{5-x} < x+1$ is

(a)
$$< x \le$$
 (b) .

(4) Let α and β be two solutions of the equation $x^2 - x + 4 = 0$.

Then
$$\frac{\beta}{\alpha} + \frac{\alpha}{\beta} =$$

(5) For $a = \frac{\sqrt{10} + \sqrt{2}}{2}$ and $b = \frac{\sqrt{10} - \sqrt{2}}{2}$, we have

$$\log_2(a^2 + ab + b^2) = \boxed{.}$$

2. Suppose that f(x) = ax + b satisfies the three conditions:

$$\int_0^2 f(x)dx = 2, \quad \int_0^2 \{f(x)\}^2 dx = 4 \quad \text{and} \quad f(0) > 0.$$

- (1) Determine f(x).
- (2) Set g(x) = f(x) + c. When c varies, find the minimum of the integral

$$\int_{0}^{2} \{g(x)\}^{2} dx.$$

Fill in the blanks with the correct answers.

- (1) f(x) =
- (2)

- **3.** Take a line segment AB with a length 6. Consider a semicircle with AB as the diameter. Let P be a point on the arc \widehat{AB} . Let $x = \angle ABP$.
 - Express the area of the △APB in terms of x.
 - (2) Find the range of x for which the area of the $\triangle APB \ge \frac{9\sqrt{2}}{2}$.
 - (3) If the point P is so chosen that PA+PB= $3\sqrt{6}$ holds, find the area of the \triangle APB.

Fill in the blanks with the correct answers.

(1)	
(2)	
(3)	