2009年度日本政府(文部科学省)奨学金留学生選考試験

QUALIFYING EXAMINATION FOR APPLICANTS FOR JAPANESE GOVERNMENT (MONBUKAGAKUSHO) SCHOLARSHIPS 2009

学科試験 問題

EXAMINATION QUESTIONS

(学部留学生)

UNDERGRADUATE STUDENTS

数 学(A)

MATHEMATICS (A)

注意 ☆試験時間は60分。

PLEASE NOTE: THE TEST PERIOD IS 60 MINUTES.

MATHEMATICS (A)

Nationality

No.

(Please print full name, underlining family name)

Name

Marks

- 1 Fill in the blanks with the correct numbers.
- (1) Let α and β be solutions of $3x^2 x 3 = 0$.

Then
$$\alpha^2 + \beta^2 =$$
 .

(2) The solution of the inequality $-x < x^2 < 2x + 1$ is

(3) Let $\sin \alpha = \frac{1}{\sqrt{5}}$ (0 < α < 90°) and $\cos \beta = \frac{3}{\sqrt{10}}$ (0 < β < 90°).

Then $\sin(\alpha + \beta) = \boxed{}$.

(4) Let n be a natural number. If $3^n < 2^{100} < 3^{n+1}$, then $n = 2^{n+1}$.

Use $\log_3 2 = 0.631$.

(5) The total number of pairs of integers (x, y) which satisfy the equation

$$x^2 - 4xy + 5y^2 + 2y - 4 = 0$$
 is

2 Let
$$f(a) = \int_0^2 |x(x-a)| dx$$
 for $0 \le a \le 2$.

- (1) Find the function f(a).
- (2) Find the minimum of f(a).

3 Let a be a real number such that 1 < a < 2. $\{a_n\}$ is the sequence defined by

$$a_1 = a$$
, $a_{n+1} = |a_n| - 1$ $(n = 1, 2, 3 \cdots)$.

And put $S_n = a_1 + a_2 + \cdots + a_n$.

- (1) Find a_4 , a_5 , a_6 , a_7 .
- (2) Find S_2 , S_4 , S_6 .
- (3) When n = 2m, where m is an integer ≥ 1 , express S_n in terms of a and m.
- (4) When n = 2m + 1, where m is an integer ≥ 1 , express S_n in terms of a and m.